Eightomic

Gap Correlations Among Prime Numbers

Eightomic reveals several non-trivial prime number gap pattern sequences from automated AI-focused computational pattern analysis development.

Explanation

Human mathematicians and scientists study prime numbers to this day relentlessly without discovering any significant non-random patterns.

While developing Coherence, an automated pattern recognition pylon, Eightomic noticed the following consistent pattern in prime numbers when any set of adjacent prime numbers span a gap sized at a multiple of 10.

In a set of 3 adjacent prime numbers a b c, and when a and c have the difference of 10, b is the result of incrementing by either 4 or 6.

The first occurrence of this pattern, starting from the first prime number in ascending order, is 19 23 29.

There are several other patterns, for example, in a set of adjacent prime numbers a b c d and when a and d have the difference of 10, the difference of b and c is always 2.

The first occurrence of this pattern, starting from the first prime number in ascending order, is 7 11 13 17.

The following prime number generator code validates this for the first 20k primes.

#include <stdbool.h> #include <stdio.h> int main(void) { unsigned int primes[20000]; unsigned int dividend = 3; unsigned int divisor; unsigned short gap_occurrences_count = 0; unsigned short i = 1; bool is_prime; bool is_pattern = true; while (i != 20000) { divisor = 3; is_prime = true; while ( dividend != divisor && is_prime == true ) { if ((dividend % divisor) == 0) { is_prime = false; } divisor += 2; } if (is_prime == true) { primes[i] = divisor; i++; } dividend += 2; } while (i != 9) { i--; if ((primes[i] - 10) == primes[i - 2]) { gap_occurrences_count++; if ( (primes[i - 1] + 4) != primes[i] && (primes[i - 1] + 6) != primes[i] ) { is_pattern = false; } } } if (is_pattern == true) { printf( "The prime number pattern is consistent among %u gap occurences.", gap_occurrences_count ); } else { printf( "The prime number pattern is inconsistent among %u gap occurences.", gap_occurrences_count ); } return 0; }

Of the 20k primes, there are 1120 occurrences of the aforementioned pattern.

The following is a visualization of the first 100 occurences and their increments.

19 +4 23 +6 29 31 +6 37 +4 41 43 +4 47 +6 53 61 +6 67 +4 71 73 +6 79 +4 83 79 +4 83 +6 89 127 +4 131 +6 137 157 +6 163 +4 167 163 +4 167 +6 173 229 +4 233 +6 239 271 +6 277 +4 281 349 +4 353 +6 359 373 +6 379 +4 383 379 +4 383 +6 389 433 +6 439 +4 443 439 +4 443 +6 449 499 +4 503 +6 509 607 +6 613 +4 617 643 +4 647 +6 653 673 +4 677 +6 683 733 +6 739 +4 743 751 +6 757 +4 761 937 +4 941 +6 947 967 +4 971 +6 977 1009 +4 1013 +6 1019 1093 +4 1097 +6 1103 1213 +4 1217 +6 1223 1279 +4 1283 +6 1289 1291 +6 1297 +4 1301 1429 +4 1433 +6 1439 1489 +4 1493 +6 1499 1543 +6 1549 +4 1553 1549 +4 1553 +6 1559 1597 +4 1601 +6 1607 1609 +4 1613 +6 1619 1657 +6 1663 +4 1667 1777 +6 1783 +4 1787 1861 +6 1867 +4 1871 1987 +6 1993 +4 1997 2131 +6 2137 +4 2141 2203 +4 2207 +6 2213 2287 +6 2293 +4 2297 2341 +6 2347 +4 2351 2347 +4 2351 +6 2357 2371 +6 2377 +4 2381 2383 +6 2389 +4 2393 2389 +4 2393 +6 2399 2437 +4 2441 +6 2447 2467 +6 2473 +4 2477 2539 +4 2543 +6 2549 2677 +6 2683 +4 2687 2689 +4 2693 +6 2699 2791 +6 2797 +4 2801 2833 +4 2837 +6 2843 2851 +6 2857 +4 2861 2953 +4 2957 +6 2963 3079 +4 3083 +6 3089 3181 +6 3187 +4 3191 3313 +6 3319 +4 3323 3319 +4 3323 +6 3329 3529 +4 3533 +6 3539 3607 +6 3613 +4 3617 3613 +4 3617 +6 3623 3691 +6 3697 +4 3701 3793 +4 3797 +6 3803 3907 +4 3911 +6 3917 3919 +4 3923 +6 3929 4003 +4 4007 +6 4013 4129 +4 4133 +6 4139 4441 +6 4447 +4 4451 4447 +4 4451 +6 4457 4507 +6 4513 +4 4517 4639 +4 4643 +6 4649 4723 +6 4729 +4 4733 4789 +4 4793 +6 4799 4933 +4 4937 +6 4943 4993 +6 4999 +4 5003 4999 +4 5003 +6 5009 5077 +4 5081 +6 5087 5407 +6 5413 +4 5417 5431 +6 5437 +4 5441 5521 +6 5527 +4 5531 5563 +6 5569 +4 5573 5641 +6 5647 +4 5651 5683 +6 5689 +4 5693 5839 +4 5843 +6 5849 5851 +6 5857 +4 5861 5857 +4 5861 +6 5867 6037 +6 6043 +4 6047 6043 +4 6047 +6 6053 6211 +6 6217 +4 6221 6571 +6 6577 +4 6581 6907 +4 6911 +6 6917 6961 +6 6967 +4 6971 6967 +4 6971 +6 6977 6991 +6 6997 +4 7001 7237 +6 7243 +4 7247 7243 +4 7247 +6 7253 7477 +4 7481 +6 7487 7537 +4 7541 +6 7547

The aforementioned pattern can directly contribute to further cryptanalytic proofs required by secure hashing algorithms that leverage the entropic security properties of prime number derivatives.

Additional sub-patterns could suggest the existence of undiscovered pattern occurences hidden in nature.

Further analysis may eventually reveal a deterministic prime number increment formula to revolutionize computational primality testing and redefine the constraining mysteries of mathematics and science.

Contrivity

Experience the artistic depiction of perfect chaotic order with precise software engineering optimality.

Use arrow keys to shoot and w a s d to move within the pulsing circle while avoiding enemies.

Purchase an offline, unobfuscated copy for $8 to receive a download link within 24-48 hours.