Gap Correlations Among Prime Numbers
Eightomic reveals several non-trivial prime number gap pattern sequences from automated AI-focused computational pattern analysis development.
Explanation
Human mathematicians and scientists study prime numbers to this day relentlessly without discovering any significant non-random patterns.
While developing Coherence, an automated pattern recognition pylon, Eightomic noticed the following consistent pattern in prime numbers when any set of adjacent prime numbers span a gap sized at a multiple of 10.
In a set of 3 adjacent prime numbers a b c, and when a and c have the difference of 10, b is the result of incrementing by either 4 or 6.
The first occurrence of this pattern, starting from the first prime number in ascending order, is 19 23 29.
There are several other patterns, for example, in a set of adjacent prime numbers a b c d and when a and d have the difference of 10, the difference of b and c is always 2.
The first occurrence of this pattern, starting from the first prime number in ascending order, is 7 11 13 17.
The following prime number generator code validates this for the first 20k primes.
#include <stdbool.h>
#include <stdio.h>
int main(void) {
unsigned int primes[20000];
unsigned int dividend = 3;
unsigned int divisor;
unsigned short gap_occurrences_count = 0;
unsigned short i = 1;
bool is_prime;
bool is_pattern = true;
while (i != 20000) {
divisor = 3;
is_prime = true;
while (
dividend != divisor &&
is_prime == true
) {
if ((dividend % divisor) == 0) {
is_prime = false;
}
divisor += 2;
}
if (is_prime == true) {
primes[i] = divisor;
i++;
}
dividend += 2;
}
while (i != 9) {
i--;
if ((primes[i] - 10) == primes[i - 2]) {
gap_occurrences_count++;
if (
(primes[i - 1] + 4) != primes[i] &&
(primes[i - 1] + 6) != primes[i]
) {
is_pattern = false;
}
}
}
if (is_pattern == true) {
printf(
"The prime number pattern is consistent among %u gap occurences.",
gap_occurrences_count
);
} else {
printf(
"The prime number pattern is inconsistent among %u gap occurences.",
gap_occurrences_count
);
}
return 0;
}
Of the 20k primes, there are 1120 occurrences of the aforementioned pattern.
The following is a visualization of the first 100 occurences and their increments.
19 +4 23 +6 29
31 +6 37 +4 41
43 +4 47 +6 53
61 +6 67 +4 71
73 +6 79 +4 83
79 +4 83 +6 89
127 +4 131 +6 137
157 +6 163 +4 167
163 +4 167 +6 173
229 +4 233 +6 239
271 +6 277 +4 281
349 +4 353 +6 359
373 +6 379 +4 383
379 +4 383 +6 389
433 +6 439 +4 443
439 +4 443 +6 449
499 +4 503 +6 509
607 +6 613 +4 617
643 +4 647 +6 653
673 +4 677 +6 683
733 +6 739 +4 743
751 +6 757 +4 761
937 +4 941 +6 947
967 +4 971 +6 977
1009 +4 1013 +6 1019
1093 +4 1097 +6 1103
1213 +4 1217 +6 1223
1279 +4 1283 +6 1289
1291 +6 1297 +4 1301
1429 +4 1433 +6 1439
1489 +4 1493 +6 1499
1543 +6 1549 +4 1553
1549 +4 1553 +6 1559
1597 +4 1601 +6 1607
1609 +4 1613 +6 1619
1657 +6 1663 +4 1667
1777 +6 1783 +4 1787
1861 +6 1867 +4 1871
1987 +6 1993 +4 1997
2131 +6 2137 +4 2141
2203 +4 2207 +6 2213
2287 +6 2293 +4 2297
2341 +6 2347 +4 2351
2347 +4 2351 +6 2357
2371 +6 2377 +4 2381
2383 +6 2389 +4 2393
2389 +4 2393 +6 2399
2437 +4 2441 +6 2447
2467 +6 2473 +4 2477
2539 +4 2543 +6 2549
2677 +6 2683 +4 2687
2689 +4 2693 +6 2699
2791 +6 2797 +4 2801
2833 +4 2837 +6 2843
2851 +6 2857 +4 2861
2953 +4 2957 +6 2963
3079 +4 3083 +6 3089
3181 +6 3187 +4 3191
3313 +6 3319 +4 3323
3319 +4 3323 +6 3329
3529 +4 3533 +6 3539
3607 +6 3613 +4 3617
3613 +4 3617 +6 3623
3691 +6 3697 +4 3701
3793 +4 3797 +6 3803
3907 +4 3911 +6 3917
3919 +4 3923 +6 3929
4003 +4 4007 +6 4013
4129 +4 4133 +6 4139
4441 +6 4447 +4 4451
4447 +4 4451 +6 4457
4507 +6 4513 +4 4517
4639 +4 4643 +6 4649
4723 +6 4729 +4 4733
4789 +4 4793 +6 4799
4933 +4 4937 +6 4943
4993 +6 4999 +4 5003
4999 +4 5003 +6 5009
5077 +4 5081 +6 5087
5407 +6 5413 +4 5417
5431 +6 5437 +4 5441
5521 +6 5527 +4 5531
5563 +6 5569 +4 5573
5641 +6 5647 +4 5651
5683 +6 5689 +4 5693
5839 +4 5843 +6 5849
5851 +6 5857 +4 5861
5857 +4 5861 +6 5867
6037 +6 6043 +4 6047
6043 +4 6047 +6 6053
6211 +6 6217 +4 6221
6571 +6 6577 +4 6581
6907 +4 6911 +6 6917
6961 +6 6967 +4 6971
6967 +4 6971 +6 6977
6991 +6 6997 +4 7001
7237 +6 7243 +4 7247
7243 +4 7247 +6 7253
7477 +4 7481 +6 7487
7537 +4 7541 +6 7547
The aforementioned pattern can directly contribute to further cryptanalytic proofs required by secure hashing algorithms that leverage the entropic security properties of prime number derivatives.
Additional sub-patterns could suggest the existence of undiscovered pattern occurences hidden in nature.
Further analysis may eventually reveal a deterministic prime number increment formula to revolutionize computational primality testing and redefine the constraining mysteries of mathematics and science.
Contrivity
Experience the artistic depiction of perfect chaotic order with precise software engineering optimality.
Use arrow keys to shoot and w a s d to move within the pulsing circle while avoiding enemies.
Purchase an offline, unobfuscated copy for $8 to receive a download link within 24-48 hours.