Eightomic

Gap Correlations Among Prime Numbers

Eightomic reveals several non-trivial prime number gap pattern sequences from automated computational pattern analysis development.

Explanation

Mathematicians and scientists study prime numbers to this day relentlessly without discovering any significant non-random patterns.

While developing Coherence, an automated pattern recognition API, Eightomic noticed the following consistent pattern in prime numbers when any set of adjacent prime numbers span a gap sized at a multiple of 10.

In a set of 3 adjacent prime numbers a b c, and when a and c have the difference of 10, b is the result of incrementing by either 4 or 6.

The first occurrence of this pattern, starting from the first prime number in ascending order, is 19 23 29.

There are several other patterns, for example, in a set of adjacent prime numbers a b c d and when a and d have the difference of 10, the difference of b and c is always 2.

The first occurrence of this pattern, starting from the first prime number in ascending order, is 7 11 13 17.

The following prime number generator code validates this for the first 20k primes.

#include <stdio.h> int main(void) { unsigned int primes[20000]; unsigned int dividend = 3; unsigned int divisor; unsigned short gap_occurrences_count = 0; unsigned short i = 1; unsigned char is_prime; unsigned char is_pattern = 1; while (i < 20000) { divisor = 3; is_prime = 1; while ( dividend != divisor && is_prime == 1 ) { if ((dividend % divisor) == 0) { is_prime = 0; } divisor += 2; } if (is_prime == 1) { primes[i] = divisor; i++; } dividend += 2; } while (i > 9) { i--; if ((primes[i] - 10) == primes[i - 2]) { gap_occurrences_count++; if ( (primes[i - 1] + 4) != primes[i] && (primes[i - 1] + 6) != primes[i] ) { is_pattern = 0; } } } if (is_pattern == 1) { printf( "The prime number pattern is consistent among %u gap occurences.", gap_occurrences_count ); } else { printf( "The prime number pattern is inconsistent among %u gap occurences.", gap_occurrences_count ); } return 0; }

Of the 20k primes, there are 1120 occurrences of the aforementioned pattern.

The following is a visualization of the first 100 occurences and their increments.

19 +4 23 +6 29 31 +6 37 +4 41 43 +4 47 +6 53 61 +6 67 +4 71 73 +6 79 +4 83 79 +4 83 +6 89 127 +4 131 +6 137 157 +6 163 +4 167 163 +4 167 +6 173 229 +4 233 +6 239 271 +6 277 +4 281 349 +4 353 +6 359 373 +6 379 +4 383 379 +4 383 +6 389 433 +6 439 +4 443 439 +4 443 +6 449 499 +4 503 +6 509 607 +6 613 +4 617 643 +4 647 +6 653 673 +4 677 +6 683 733 +6 739 +4 743 751 +6 757 +4 761 937 +4 941 +6 947 967 +4 971 +6 977 1009 +4 1013 +6 1019 1093 +4 1097 +6 1103 1213 +4 1217 +6 1223 1279 +4 1283 +6 1289 1291 +6 1297 +4 1301 1429 +4 1433 +6 1439 1489 +4 1493 +6 1499 1543 +6 1549 +4 1553 1549 +4 1553 +6 1559 1597 +4 1601 +6 1607 1609 +4 1613 +6 1619 1657 +6 1663 +4 1667 1777 +6 1783 +4 1787 1861 +6 1867 +4 1871 1987 +6 1993 +4 1997 2131 +6 2137 +4 2141 2203 +4 2207 +6 2213 2287 +6 2293 +4 2297 2341 +6 2347 +4 2351 2347 +4 2351 +6 2357 2371 +6 2377 +4 2381 2383 +6 2389 +4 2393 2389 +4 2393 +6 2399 2437 +4 2441 +6 2447 2467 +6 2473 +4 2477 2539 +4 2543 +6 2549 2677 +6 2683 +4 2687 2689 +4 2693 +6 2699 2791 +6 2797 +4 2801 2833 +4 2837 +6 2843 2851 +6 2857 +4 2861 2953 +4 2957 +6 2963 3079 +4 3083 +6 3089 3181 +6 3187 +4 3191 3313 +6 3319 +4 3323 3319 +4 3323 +6 3329 3529 +4 3533 +6 3539 3607 +6 3613 +4 3617 3613 +4 3617 +6 3623 3691 +6 3697 +4 3701 3793 +4 3797 +6 3803 3907 +4 3911 +6 3917 3919 +4 3923 +6 3929 4003 +4 4007 +6 4013 4129 +4 4133 +6 4139 4441 +6 4447 +4 4451 4447 +4 4451 +6 4457 4507 +6 4513 +4 4517 4639 +4 4643 +6 4649 4723 +6 4729 +4 4733 4789 +4 4793 +6 4799 4933 +4 4937 +6 4943 4993 +6 4999 +4 5003 4999 +4 5003 +6 5009 5077 +4 5081 +6 5087 5407 +6 5413 +4 5417 5431 +6 5437 +4 5441 5521 +6 5527 +4 5531 5563 +6 5569 +4 5573 5641 +6 5647 +4 5651 5683 +6 5689 +4 5693 5839 +4 5843 +6 5849 5851 +6 5857 +4 5861 5857 +4 5861 +6 5867 6037 +6 6043 +4 6047 6043 +4 6047 +6 6053 6211 +6 6217 +4 6221 6571 +6 6577 +4 6581 6907 +4 6911 +6 6917 6961 +6 6967 +4 6971 6967 +4 6971 +6 6977 6991 +6 6997 +4 7001 7237 +6 7243 +4 7247 7243 +4 7247 +6 7253 7477 +4 7481 +6 7487 7537 +4 7541 +6 7547

The aforementioned pattern can directly contribute to further cryptanalytic proofs required by secure hashing algorithms that leverage the entropic security properties of prime number derivatives.

Additional sub-patterns could suggest the existence of undiscovered pattern occurences hidden in nature.

Further analysis may eventually reveal a deterministic prime number increment formula to revolutionize computational primality testing and redefine the constraining mysteries of mathematics and science.