Gap Correlations Among Prime Numbers
Eightomic reveals several non-trivial prime number gap pattern sequences from automated computational pattern analysis development.
Explanation
Mathematicians and scientists study prime numbers to this day relentlessly without discovering any significant non-random patterns.
While developing Coherence, an automated pattern recognition API, Eightomic noticed the following consistent pattern in prime numbers when any set of adjacent prime numbers span a gap sized at a multiple of 10.
In a set of 3 adjacent prime numbers a b c, and when a and c have the difference of 10, b is the result of incrementing by either 4 or 6.
The first occurrence of this pattern, starting from the first prime number in ascending order, is 19 23 29.
There are several other patterns, for example, in a set of adjacent prime numbers a b c d and when a and d have the difference of 10, the difference of b and c is always 2.
The first occurrence of this pattern, starting from the first prime number in ascending order, is 7 11 13 17.
The following prime number generator code validates this for the first 20k primes.
#include <stdio.h>
int main(void) {
unsigned int primes[20000];
unsigned int dividend = 3;
unsigned int divisor;
unsigned short gap_occurrences_count = 0;
unsigned short i = 1;
unsigned char is_prime;
unsigned char is_pattern = 1;
while (i < 20000) {
divisor = 3;
is_prime = 1;
while (
dividend != divisor &&
is_prime == 1
) {
if ((dividend % divisor) == 0) {
is_prime = 0;
}
divisor += 2;
}
if (is_prime == 1) {
primes[i] = divisor;
i++;
}
dividend += 2;
}
while (i > 9) {
i--;
if ((primes[i] - 10) == primes[i - 2]) {
gap_occurrences_count++;
if (
(primes[i - 1] + 4) != primes[i] &&
(primes[i - 1] + 6) != primes[i]
) {
is_pattern = 0;
}
}
}
if (is_pattern == 1) {
printf(
"The prime number pattern is consistent among %u gap occurences.",
gap_occurrences_count
);
} else {
printf(
"The prime number pattern is inconsistent among %u gap occurences.",
gap_occurrences_count
);
}
return 0;
}
Of the 20k primes, there are 1120 occurrences of the aforementioned pattern.
The following is a visualization of the first 100 occurences and their increments.
19 +4 23 +6 29
31 +6 37 +4 41
43 +4 47 +6 53
61 +6 67 +4 71
73 +6 79 +4 83
79 +4 83 +6 89
127 +4 131 +6 137
157 +6 163 +4 167
163 +4 167 +6 173
229 +4 233 +6 239
271 +6 277 +4 281
349 +4 353 +6 359
373 +6 379 +4 383
379 +4 383 +6 389
433 +6 439 +4 443
439 +4 443 +6 449
499 +4 503 +6 509
607 +6 613 +4 617
643 +4 647 +6 653
673 +4 677 +6 683
733 +6 739 +4 743
751 +6 757 +4 761
937 +4 941 +6 947
967 +4 971 +6 977
1009 +4 1013 +6 1019
1093 +4 1097 +6 1103
1213 +4 1217 +6 1223
1279 +4 1283 +6 1289
1291 +6 1297 +4 1301
1429 +4 1433 +6 1439
1489 +4 1493 +6 1499
1543 +6 1549 +4 1553
1549 +4 1553 +6 1559
1597 +4 1601 +6 1607
1609 +4 1613 +6 1619
1657 +6 1663 +4 1667
1777 +6 1783 +4 1787
1861 +6 1867 +4 1871
1987 +6 1993 +4 1997
2131 +6 2137 +4 2141
2203 +4 2207 +6 2213
2287 +6 2293 +4 2297
2341 +6 2347 +4 2351
2347 +4 2351 +6 2357
2371 +6 2377 +4 2381
2383 +6 2389 +4 2393
2389 +4 2393 +6 2399
2437 +4 2441 +6 2447
2467 +6 2473 +4 2477
2539 +4 2543 +6 2549
2677 +6 2683 +4 2687
2689 +4 2693 +6 2699
2791 +6 2797 +4 2801
2833 +4 2837 +6 2843
2851 +6 2857 +4 2861
2953 +4 2957 +6 2963
3079 +4 3083 +6 3089
3181 +6 3187 +4 3191
3313 +6 3319 +4 3323
3319 +4 3323 +6 3329
3529 +4 3533 +6 3539
3607 +6 3613 +4 3617
3613 +4 3617 +6 3623
3691 +6 3697 +4 3701
3793 +4 3797 +6 3803
3907 +4 3911 +6 3917
3919 +4 3923 +6 3929
4003 +4 4007 +6 4013
4129 +4 4133 +6 4139
4441 +6 4447 +4 4451
4447 +4 4451 +6 4457
4507 +6 4513 +4 4517
4639 +4 4643 +6 4649
4723 +6 4729 +4 4733
4789 +4 4793 +6 4799
4933 +4 4937 +6 4943
4993 +6 4999 +4 5003
4999 +4 5003 +6 5009
5077 +4 5081 +6 5087
5407 +6 5413 +4 5417
5431 +6 5437 +4 5441
5521 +6 5527 +4 5531
5563 +6 5569 +4 5573
5641 +6 5647 +4 5651
5683 +6 5689 +4 5693
5839 +4 5843 +6 5849
5851 +6 5857 +4 5861
5857 +4 5861 +6 5867
6037 +6 6043 +4 6047
6043 +4 6047 +6 6053
6211 +6 6217 +4 6221
6571 +6 6577 +4 6581
6907 +4 6911 +6 6917
6961 +6 6967 +4 6971
6967 +4 6971 +6 6977
6991 +6 6997 +4 7001
7237 +6 7243 +4 7247
7243 +4 7247 +6 7253
7477 +4 7481 +6 7487
7537 +4 7541 +6 7547
The aforementioned pattern can directly contribute to further cryptanalytic proofs required by secure hashing algorithms that leverage the entropic security properties of prime number derivatives.
Additional sub-patterns could suggest the existence of undiscovered pattern occurences hidden in nature.
Further analysis may eventually reveal a deterministic prime number increment formula to revolutionize computational primality testing and redefine the constraining mysteries of mathematics and science.